
Implementation of L-System… (Surya Sujarwo; dkk) 289

IMPLEMENTATION OF L-SYSTEM
IN PROCEDURAL CITY GENERATION USING JAVA

Surya Sujarwo; William Salim; Ferry Yuwono

Information Technology Major, Computer Science Faculty, Bina Nusantara University
Jln. Kebon Jeruk Raya No 27, Kebon Jeruk, Jakarta Barat 11530
surya.ss@binus.edu1; wsalim@binus.edu2; fyuwono@binus.edu3

ABSTRACT

Article discusses about the design and implementation of procedural content generation using java,
especially the generation of virtual city. It is applied by using L-System to generate the elements of the city and
also using some images as the base models. This method is proven to be more effective because it can produce
almost unlimited variations of city in short amount of time without any needs to modify the application. The
result of this application is a road map which can be used in many areas such as virtual reality, games, or other
related purposes.

Keywords: L-System, virtual city, procedural content generation, java

ABSTRAK

 Artikel ini mendiskusikan tentang perancangan dan implementasi prosedur isi umum penggunaan Java,
terutama berhubungan dengan kota virtual. Program tersebut diaplikasikan menggunakan L-System untuk
menghasilkan elemen-elemen kota dan juga menggunakan beberapa gambar sebagai model. Metode ini
dibuktikan agar lebih efektif karena bisa memproduksi beberapa variasi kota yang banyak dalam waktu sedikit
tanpa kebutuhan memodifikasi aplikasi. Hasil dari aplikasi ini adalah sebuah peta jalan yang bisa digunakan di
berbagai are seperti virtual reality, games, dan sebagainya.

Kata kunci: L-System, kota virtual, prosedur isi umum, java

290 ComTech Vol.1 No.2 Desember 2010: 289-300

INTRODUCTION

 In gaming industry, the game contents are considered as a very important part. Most of great
games usually come with detailed and complex contents. However, it should be noted that the level of
complexity of the content itself will determine the creation time needed. The more detail content is,
more time will be needed to generate.

Limited amount of time usually becomes an issue in the game industries, which always run for
the published deadline especially the one with a lot variation of contents. Just lately the Starcraft II
that just launched needed almost 7 years to be generated due to the detail content. Usually a game
should have detailed contents and also should be produced as fast as possible. For example, a game
which taken cities or wide area as the places where the character is required to walk or explore, will
take a great amount of time and a lot of work to do for the artists need to model every details of every
road or area of those cities.

A better approach (than modeling every detail) is by using aerial imagery of the real world

cities, and then the object (roads or buildings) can be extracted by using computer vision. It is indeed a
great method as it can create realistic contents and will save a great amount of time. But it has its own
limitation as it can only produce the real cities based on the images, whereas some games usually need
a virtual one.

Based on the problems, the offered solution is using procedural content generation. The

procedural content generation that will be discussed in this article uses fractal as its base concept.
Fractal allows the contents to be generated in the natural forms which cannot be done by any
conventional mathematic models. It can also produce something with no limitation on details.
Combined with some randomness, it can produce huge number of variations output from a single
input. The fractal method which will be used in this research is the L-system model.

The goal of this research is to use the concept of procedural content generation to produce

roadmaps which will contain the vertices and edges information of the generated virtual cities which
can be applied directly to be used in the gaming industry. During the process, it will utilize the
drawings in the form of height map, water map, population density map, blocked areas map, and
pattern map as the bases in the roadmap generation. This research then can be used as the reference in
the game development to produce more detailed contents in the least amount of time as possible.

Literature Review

Procedural content generation (PCG) is a method to generate the contents of the game by

using some specific algorithms which executed procedurally. It usually uses random or pseudo random
numbers to produce almost (pseudo) infinite unique variations of game contents. Although it is stated
to be random in some ways, procedural content generator can be controlled to produce the exactly
same output by using its random seed value. The same random number sequences will be produced by
using same random seed (because computer uses pseudo random number); therefore it is possible to
predict the output. Procedural content generator usually takes some amount of parameter to produce
large amount of contents.

The word procedural in procedural content generation means a process to execute some

specific functions by using a predefined set of rules. Procedural content generation uses many kind of
methods to generate the contents. One of the methods is Lindenmayer System or also known as L-
system.

Implementation of L-System… (Surya Sujarwo; dkk) 291

In 1968, a biologist named Arstid Lindenmayer introduced a new string rewriting mechanism
which then popular as L-System. In general, rewriting is a technique to define a complex object by
changing the object’s parts (which are originally more simple) into a more complex parts
consecutively by using a set of rewriting rules and productions. The classic example of the graphical
object that is defined by using the rewriting rules is the snowflake curves, which was proposed in 1905
by Von Koch (1870 - 1924).

Benoît B. Mandelbrot restated the construction of snowflake curves which is started with two

shapes, one act as the initiator, and the other act as the generator. The generator is an oriented broken
line made of N lines with equal sides of length r. Each construction phase started with a broken lines
which then continued by replacing each straight line with a copy of the generator. The copy is rescaled
and reoriented so that it has the same start and end points as the replaced line. The construction
concept of snowflake curve is shown in figure 1.

As it is easier to study the rewriting system by using string than a graphical representation,
there were several concepts of rewriting system appearing, including Chomsky grammar and L-
system. The main difference is how the productions are applied to the existing string. Chomsky
grammar replaces the ‘string in a production’ sequentially whereas L-system replaces ‘all the string’
simultaneously in parallel.

The simplest class of L-System which are deterministic and context free, called DOL-System.

For example, assume that a string is formed by two letter, ‘a’ and ‘b’, which can appear multiple times
in a string. Every letter has its own rewriting rule. The rule a → ab means that every letter ‘a’ will be
replaced by string ‘ab’, and the rule b → a means that every letter ‘b’ will be replaced by string ‘a’.
The rewriting process starts from a string called axiom. Assume that the axiom contains the letter ‘b’,
in the first rewriting phase, axiom ‘b’ is replaced by ‘a’ using production b → a. In the second
derivation, ‘a’ is replaced with ‘ab’ from the production a → ab. String ‘ab’ has two letters, both of
them will be replaced simultaneously and it will produce ‘aba’. Using the same method, ‘aba’ will
produce ‘abaab’, then it will become ‘abaababa’, then ‘abaababaabaab’, and so on. The detail of
replacement process is shown in Figure 2.

Figure 1 Construction of snowflake curve Figure 2 Example of a derivation in a DOL-system

Assume that V is an alphabet, V* is a set of every words of V, and V+ is a set of non-empty

words of V. A string in OL-system is an ordered triplet G = {V,ω,P} where V is the alphabet, ω א
V+ is a non-empty word which is called axiom, and P ؿ V × V* is a finite set of productions. A
production (a, χ) א P written as a → χ. The letter ‘a’ is a predecessor and the letter χ is the
successor of the production. It is assumed that for any letter a א V, there should be at least one word χ
 V, the identity א V* such as a ՜ χ. If there is no production specified for a given predecessor a א
production of a → a is assumed as the part of production P. An OL-system is deterministic (noted
DOL-system) if and only if for each a א V there is exactly one χ א V* such that a → χ.

292 ComTech Vol.1 No.2 Desember 2010: 289-300

Let μ = a1 … am be an arbitrary word over V. The word ν = χ1 … χm א V* is directly derived
(or generated by) μ, noted μ ֜ ν, if and only if ai → χi for all i = 1,…, m. A word V is generated by
G in a derivation of length n if there exists a developmental sequence of words μ0, μ1,…, μn such that
μ0 = ω, μn = ν and μ0 ֜ μ1 ֜ ... ֜ μn. The sample implementation of DOL-System is shown in Figure
3.

Figure 3 Development of a filament
(Anabaena catenula) simulated using a DOL-system

 L-system can be used to visualize the structures by embedding graphical symbols in the string
that can be later used for rendering. Turtle commands can be used to describe and visualize a wide
range of L-systems including Koch's snowflake, plants and branching structures. The concept behind
Turtle Graphics is like a simulation to give a 'turtle' certain given instructions relative to its current
position and as it moves it leaves a pen line mark (trail) behind it. By using turtle graphics, shapes,
drawing and structures can be defined in the terms of an L-system. Using a bracket extension to Turtle
Graphics, L-systems can support the branching structures such as trees that are predominant in nature.
The interpretation of turtle graphic is shown in figure 4.

Figure 4: Tree formation generated with via the turtle graphics L-system interpreter.

METHOD

This research process applied two methods, literature and laboratory study. Literature study is
done by finding the resource from internet, documentations, and articles which are connected to the

Implementation of L-System… (Surya Sujarwo; dkk) 293

algorithm that is discussed in this research. Laboratory study is done by testing the software speed to
generate contents on two computers, each with different specification.

DISCUSSION

Designing The System

The system is designed to allow automatic construction of roadmap based on some predefined

procedures and predetermined input. It will form a workflow as shown in figure 5. The system itself
will begin its operation by creating the base road map which consists of the main roads and the streets.
It is done by using extended L-system.

The extended L-system only provides the basic template at each stage of production. The

modification of parameters is done by the external functions. This way, the system grows more
flexible. It allows the separation of global goals and local constraint. Usually, when a predecessor
produce its successor based on the production rule, the parameters haven’t set yet. When the global
goals are applied to the successor, it will determine the values of the parameters. The system then will
apply the local constraints to modify the parameters based on specific environment. This way, the
produced successor will have different parameters according to its environment.

The next stage is to remove bad edges. Bad edges include the roads that are intersecting the

other roads, which shouldn’t happen, and also the roads that have the dead end. From the produced
roadmap, the curbs are generated to give thickness to the roads. It will create blocks. The blocks then
subdivided into smaller spaces which then are used to place the buildings.

Figure 5 The workflow of procedural city generation

This research will use simple production rules to produce the desired roadmap. It will have

two alphabets R and B. The letter R will have 4 parameters and letter B will take 5 parameters. The
production rules are written as follows:

ω : R (0, 1, ROAD, ACCEPT)
p1 : R (from, to, type, state) : state==DELETE
 → ε

294 ComTech Vol.1 No.2 Desember 2010: 289-300

p2 : R (from, to, type, state) : state==ACCEPT
 → B (d[0], from,dirX[0], dirY[0], t[0])
 B (d[1], from,dirX[1],dirY[1], t[1])
 B (0, from, dirX[2], dirY[2], type)
p3 : B (delay, from, dirX, dirY, type) : delay > 0
 → B (delay, from, dirX, dirY, type)
P4 : B (delay, from, dirX, dirY, type) : delay == 0
 → R (from, to, type, state)

The first production will be used to terminate the production of the predecessor string. It will

only happen when the state changed by the fourth production. The second production will produce
three strings B. One of them has to be the main road, while the other two can be either main road or
the street. The direction of each branch is generated based on the previous branch. The local constraint
will be applied to modify this parameter. It will include the checking on the provided height map,
population density map, and pattern map. It will re-calculate the direction of generated road based on
the provided map.

The third production will decrease the delay parameter on each predecessor without changing

the other parameters. The delay is used to ensure the system to apply the fourth production to the
successors from the same predecessor at different time. The fourth production is responsible to modify
the parameters based on the current condition. For example, if the current location is already occupied
by another road or if the road intersects with the other, then it has to be readjusted by rotating or
rescaling the road. It also decides the state of the successor string based on whether the new road is
successfully inserted or not.

The detailed flowchart of procedural city generator is shown in figure 6. It includes all the

procedures taken to create a roadmap. In the flowchart, the L-system is applied repeatedly until there’s
no change detected in the roadmap. Then the L-system is reapplied with slightly different parameters
to create the street and fill the remaining space on the map. In the figure 6, it appears that before
generating the edges, the L-system will try to attach the current vertex to the nearby vertex. If the
system doesn’t find any vertex, then it will look for an intersection with other edge. If the intersection
is found, the new edge will be cut and intersected edge will be split.

The next step is to clean the produced map from unwanted roads, which begin with removing

duplicate roads (the roads with same start and end points). There are some intersecting roads left
which should also be removed. The road production usually produces the dead ends or unused
vertices. Those edges and vertices won’t have any use because there won’t be any building generated
on them. After the roadmap is clean, the curbs must be generated. This operation requires a little
mathematic computation to generate vertices on the correct locations based on the position of the
neighboring road. The generated vertices are then connected to form the curbs.

Usually, the curbs are connected to the other curbs, and they will form a polygon. The system

must extract this information to get the list of polygons. Because it is easier to operate on convex
polygon than the concave one, every concave polygon should be split into the convex one.

Implementation of L-System… (Surya Sujarwo; dkk) 295

Figure 6 The detailed flowchart of procedural road generation

The last step in procedural city generation is to generate the allotments. The allotments are

created by subdividing the extracted polygons. It also uses random numbers to create allotment with

296 ComTech Vol.1 No.2 Desember 2010: 289-300

different size. The created allotment usually will form a quad or triangle depending on how the
original polygon shaped. The procedural city generator also has to take into account for the building
which doesn’t have any direct road access. Such a building has to be removed. The generated data then
can be used to draw the texture or saved for future use. In this research, the generated roadmap will be
used to render the images and saved as XML file so it can be used easily by the other programs.

Implementation And Evaluation

This system is implemented by using java language. The program itself doesn’t really have

any interface. It only has one window to show the city generation progress. It will redraw each time if
there is any change in the road map. Since the redraw operation is taking a lot of time, this feature can
be toggled off to save time in the process. The program will require some images as mentioned before,
height map, water map, population density map, blocked areas map, and pattern map. These maps will
be the guideline so that the system knows where the roads should be generated.

This program also needs a file containing the basic parameters for road creation such as the

length of road segments, random seed, initial road position, sampling rate, road width, pattern color
key, etc. These parameters will affect the process entirely. For example, if the length of road segments
is changed, there will be fewer roads since every road segment will take more space. Another example
is if the random seed is changed then a completely different roadmap would be generated. It means the
user only has to change the parameters or the maps to create any variation of roadmap. The program
will start with loading all the required files including the images. Then the main roads are generated
from the initial road defined in the parameter file. It runs through the L-system algorithm. After the
process finished, it will generate the street. The resulting images of these two operations are shown in
figure 7.

After the roadmap is generated, the system will filter the roadmap so there is no invalid road.

The curbs are then generated by creating new edges around the old one. Then each block will be
subdivided into smaller area that is called allotment. Notice that the allotment which doesn’t have any
road access is removed from the produced map. All of these procedures are implemented without
using L-system. It uses general vector algorithm to find any intersection and to calculate the position
of each curb’s vertices. And finally, the system uses some geometry algorithm to subdivide the blocks
and rescaling each allotment. The results can be seen in figure 8.

Figure 7 Generated main roads (left image) and
generated streets (right image)

Figure 8 Original roadmap (top left), filtered roadmap
(top right), generated curbs (bottom left), and generated

allotments (bottom right)

As mentioned before, extended L-system is easier to expand. The parameter modification can

be expanded as needed without the need to alter the production rule at all. Therefore, it is possible to
apply more than one pattern to generate the roadmap. The roadmap generated in figure 7 uses raster
pattern which form a grid. The system can be also programmed in some way that it will generate a

Implementation of L-System… (Surya Sujarwo; dkk) 297

population based pattern or gradient based pattern. It also possible to combine more than one pattern in
one roadmap based on the pattern map as shown in figure 9.

Figure 9 Gradient based pattern (left image) and hybrid pattern (right image)

This system is tested on two computers with different specification: (1) Computer I:

Processor: Pentium 4 2.80 GHz, Memory: 1.93 GB DDR, VGA: ATI Radeon Xpress 200 64MB,
Harddisk: Seagate Barracuda 80 GB, OS: Windows XP SP2; (2) Computer II: Processor: Core 2 Duo
2.66 GHz, Memory: 2.0 GB DDR2, VGA: NVIDIA Gforce 7300 GS 256MB, Harddisk: Seagate
Barracuda 250 GB, OS: Windows 7.

The test is done by running the application and let it generate some variations of roadmap,

then recording the time required for generating each roadmap. The time divided into a smaller part to
see how long each stage of procedural city generation needs to finish its job. It includes the time to
generate main road, generate street, filter road, generate curbs, extract blocks, subdivide blocks, and
rendering the final images. The test is done five times on each computer. Each test will use different
random seed. But the other parameters are left as they are. So there will be five unique roadmaps
generated in the test. The result of the test is shown in table 1 and table 2 below.

Table 1: Test result on computer I (in millisecond)

No Generate
Road

Generate
Street

Filter
road

Generate
Curbs

Extract
block Subdivide Render Total

Time

1 844 2562 2751 3468 63 422 2234 12344
2 969 2531 2781 3360 62 422 2328 12453
3 891 2625 2859 3453 78 438 2297 12641
4 750 2594 2781 3219 63 421 2219 12047
5 735 2500 2734 4484 47 438 2234 13172

Average 837.8 2562.4 2781.2 3596.8 62.6 428.2 2262.4 12531.4

Table 2: Test result on computer II (in millisecond)

No Generate
Road

Generate
Street

Filter
road

Generate
Curbs

Extract
block Subdivide Render Total

Time

1 687 2273 3183 1215 22 143 1060 8583
2 738 2375 3192 1130 20 144 1076 8675
3 693 2279 3230 1203 21 144 1078 8648

298 ComTech Vol.1 No.2 Desember 2010: 289-300

4 676 2282 3201 1245 21 144 1080 8649
5 697 2282 3188 1150 21 144 1073 8555

Average 698,2 2298,2 3198,8 1188,6 21 143,8 1073,4 8622

This result shows that the system only needs about 12.5 seconds on lower specification
computer to produce a roadmap. This is a lot faster than letting the artist to model the city manually,
though it will resulting a better result than the one generated by computer. On computer II, it takes
around 8.6 seconds, 31.2 % faster than the process on computer I. But for some reason, filter stage on
computer II takes longer than expected.

The test also records on how many vertices and edges are generated in each unit time. The

results are shown in the figure 10 and figure 11. These data show the overall progress. It shows when
the vertices and edges of the roadmap are added or deleted.

All the tests above are done using five 512x512 pixels images as the base maps. The generated
final rendered image is approximately 1600x2100 pixels. However another test using different maps
(resulting image shown in figure 9) which is approximately 2000x2000 pixels in size takes longer
time, around 50 seconds, because the maps is almost full of land so there are more places to put the
road on which means more vertices and edges to process. The roadmap also uses hybrid pattern. This
pattern consists of raster pattern and gradient based pattern. The gradient based pattern usually
requires more time to compute since they add more steps to compute the gradient of the map for each
road vertex generated.

Figure 10 Generated vertices and edges on computer
I

Figure 11 Generated vertices and edges on computer
II

CONCLUSION

Based on the test result, extended L-system is a very good method in the procedural content
generation. It can create realistic road pattern based on the global goals and local constraints defined.
The style or pattern of the generated roadmap can be changed by using different sets of global goals
and local constraint. Moreover, the shape of the resulting roadmap can be altered easily by changing
the parameters. The processing time is also low, the L-system itself only takes around 3 seconds to
finish. However, this research is done by using java language which is still slower than C or C++.

For future research, it is recommended to create more complex and realistic road pattern by

using different sets of production rules and different global goals and local constraint. A 3D
visualization and some generated buildings using L-system can also be implemented to create more
realistic scene.

Implementation of L-System… (Surya Sujarwo; dkk) 299

REFERENCES

Greuter, S., Parker, J., Stewart, N., & Leach, G. (2003). Real-time Procedural Generation of ‘Pseudo

Infinite’ Cities. In Proceedings of GRAPHITE 2003, ACM Press, 87-95.

Kelly, G., & McCabe, H. (Dec 2006). A Survey of Procedural Techniques for City Generation. ITB

Journal Issue: 14.

Parish, Y. I. H., & Müeller, P. (2001). Procedural modeling of cities. In Proceedings of ACM

SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, New York, 301–308.

Prusinkiewicz, P., Lindenmayer, A., & Hanan, J. S., et al. (1990). The Algorithmic Beauty of Plants.

New York: Springer-Verlag.

